Let X and Y are two independent random variables, then f(x,y)=g(x).h(y)----1
Now,
g(x)=∑y y×f(x,y) for given value of x
h(y)=∑x x×f(x,y) for given value of y
Now,
Cov(X,Y) = E(XY) – E(X) E(Y)
Now,
E(X,Y)=∑x∑y xy f(x,y)
E(X,Y)=∑x∑y xy g(x).h(y)
E(X,Y)=∑x x g(x) ∑y y h(y)
E(X,Y)=E(X) E(Y)
So,
Cov(X,Y) = E(XY) – E(X) E(Y)
Cov(X,Y) = E(X) E(Y) – E(X)E(Y)
Cov(X,Y) =0.
Hence,
It is proved that the covariance of two independent random variable is 0.
0 تعليقات