Learning Objectives
- To calculate Kurtosis and Skewness in Microsoft Excel [With Video Tutorial]
Calculate Kurtosis and Skewness from the given data in Excel.
| Range | f |
| 0-10 | 1 |
| 10-20 | 7 |
| 20-30 | 14 |
| 30-40 | 7 |
| 40-50 | 1 |
Formula Recalling:
Kurtosis = (Quartile Deviation)/(P90 -P10)=(Q3 -Q1)/2(P90-P10)
Skewness =(Mean -Mode)/Standard deviation (σ)
Step 1
Calculating quatile 1 (Q1), quartile 3 (Q3), P10, P90, Mean, Mode, and Standard Deviation
Quartile 1 and Quartile 3
| Quartile 1 | ||
| Q1 item | 7.5 | =(D17/4) |
| Q1 class | 10-20 | |
| Q1 | 19.286 | =B13+(B20-F12)/D13*(C13-B13) |
| Quartile 3 | ||
| Q3 item | 22.5 | |
| Q3 class | 30-40 | |
| Q3 | 30.714 | =B15+(B25-F14)/D15*(C15-B15) |
Source: Excel 2013
Percentile 10 and Percentile 90
| Percentile 10 | ||
| P10 item | 3 | |
| P10 class | 10-20 | |
| P10 | 12.86 | =B13+(E20-F12)/D13*(C13-B13) |
| Percentile 90 | ||
| P90 item | 27 | |
| P90 class | 30-40 | |
| P90 | 37.14 | =B15+(E25-F14)/D15*(C15-B15) |
Source: Excel 2013
Mean, Standard Deviation, and Mode
Model calculation
| Model Class | 20-30 | [Highest frequency class] |
| Mode | 25 | =L+((f(1)-f(0))/(2*f(1)-f(0)-f(2)))*(C14-B14) |
Source: Excel 2013
| Mean | 25 |
| SD | 8.5635 |
To know the calculation procedure of mean and standard deviation, click here.
Step 2
Calculating Kurtosis
| Kurtosis | 0.2353 | =(Q3-Q1)/(2*(P90-P10)) |
Source: Excel 2013
Calculating Skewness
| Sk | 0 | =(Mean-Mode)/Standard Deviation |
Source: Excel 2013
Conclusion
we follow two steps in calculating skewness and kurtosis.
Post a Comment